
AFRL-DE-PS-TR-2004-1025 AFRL-DE-PS-TR
2004-1025

THE CLUSTER ORBITS WITH PERTURBATIONS OF
KEPLERIAN ELEMENTS (COWPOKE) EQUATIONS

Chris Sabol
Craig McLaughlin
Kim Luu

20 March 2004

Final Report

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED.

AIR FORCE RESEARCH LABORATORY
Directed Energy Directorate
3550 Aberdeen Ave SE
AIR FORCE MATERIEL COMMAND
KIRTLAND AIR FORCE BASE, NM 87117-5776



STINFO COPY

Using Government drawings, specifications, or other data included in this document for any
purpose other than Government procurement does not in any way obligate the U.S. Government.
The fact that the Government formulated or supplied the drawings, specifications, or other data,
does not license the holder or any other person or corporation; or convey any rights or permission to
manufacture, use, or sell any patented invention that may relate to them.

This report has been reviewed by the Public Affairs Office and is releasable to the National
Technical Information Service (NTIS).  At NTIS, it will be available to the general public,
including foreign nationals.

If you change your address, wish to be removed from this mailing list, or your organization no
longer employs the addressee, please notify AFRL/DEBI, 3550 Aberdeen Ave SE, Kirtland AFB,
NM 87117-5776.

Do not return copies of this report unless contractual obligations or notice on a specific document
requires its return.

This report has been approved for publication.

//Signed//
VALERIE B. SKARUPA, GS-13
Project Manager

//Signed//                      //Signed//
DAVID L. DINWIDDIE, DR-IV       L. BRUCE SIMPSON, SES
Chief, Advanced Optics and Imaging Division      Director, Directed Energy Directorate



i

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing this collection of information.  Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense,
Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA  22202-4302.  Respondents should be aware that notwithstanding any
other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.  PLEASE DO NOT RETURN YOUR FORM TO
THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)
20-03-2004

2. REPORT TYPE
Final Report

3. DATES COVERED (From - To)
 4 Sep 02 – 30 Sep 03

4. TITLE AND SUBTITLE
The Cluster Orbits With Perturbations Of Keplerian Elements

5a. CONTRACT NUMBER
In-House

(COWPOKE) Equations 5b. GRANT NUMBER
N/A
5c. PROGRAM ELEMENT NUMBER
63444F

6. AUTHOR(S)
Chris Sabol, Craig McLaughlin *, Kim Luu

5d. PROJECT NUMBER
5113
5e. TASK NUMBER
B3
5f. WORK UNIT NUMBER
AA

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
AFRL/DEBI Det 15

8. PERFORMING ORGANIZATION REPORT
    NUMBER

535 Lipoa Parkway, Ste 200
Kihei, HI  96753

AFRL-DE-PS-TR-2004-1025

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)
Air Force Office of Scientific Research

11. SPONSOR/MONITOR’S REPORT
      NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES
*John D. Odegard School of Aerospace Sciences, Department of Space Sciences, 4149 Campus Rd, 530 Clifford Hall
Grand Forks, ND  58202-9008
14. ABSTRACT
Recent developments have indicated that it is possible to express the relative equations of motion for space objects in non-circular orbits
using mean Keplerian elements and low order expansions.  This report provides the initial derivation of one such effort known as the Cluster
Orbits With Perturbations Of Keplerian Elements (COWPOKE) equations.  Given mean Keplerian elements and element differences, the
COWPOKE equations describe spherical radial, cross-track, and along-track separations of the satellites as an explicit function of time.  The
framework of the equations allows for very high eccentricity reference orbits and for the inclusion of dynamic perturbations.  Test cases
using two-body dynamics show the utility of this approach.

15. SUBJECT TERMS
Relative motion, satellite formation flying, astrodynamics

16. SECURITY CLASSIFICATION OF: 17. LIMITATION
OF ABSTRACT

18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE PERSON
Chris Sabol

a. REPORT
UNCLASSIFIED

b. ABSTRACT
UNCLASSIFIED

c. THIS PAGE
UNCLASSIFIED

Unlimited 28 19b. TELEPHONE NUMBER (include area
code)

808-874-1594
Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. 239.18



ii

[This page intentionally left blank]



iii

TABLE OF CONTENTS

Page

INTRODUCTION 1

METHODS, ASSUMPTIONS, AND PROCEDURES 3

RESULTS AND DISCUSSION 10

CONCLUSIONS 19

RECOMMENDATIONS 19

REFERENCES 20



iv

 FIGURES

Figure Page

1. The Spherical Reference Frame for Relative Motion. 3

2. Spherical Components in Terms of Keplerian Elements and Element Differences. 5

3. Relative Error Order of Magnitude for Eccentricity Series. 6

4. LEO Test Case Radial Differences and COWPOKE Errors. 11

5. LEO Test  Case Angular Cross-Track Differences and COWPOKE Errors. 11

6. LEO Test Case Angular Along-Track Differences and COWPOKE Errors. 12

7. True Anomaly Approximation Error for LEO Test Case. 12

8. True Anomaly Difference Approximation Error for LEO Test  Case. 13

9. COWPOKE Coordinate System Approximation Errors for LEO Test Case. 14

10. HEO Test Case Radial Differences and COWPOKE Errors. 15

11. HEO Test Case Angular Cross-Track Differences and COWPOKE Errors. 15

12. HEO Test Case Angular Along-Track Differences and COWPOKE Errors. 16

13. True Anomaly Approximation Error for HEO Test Case. 17

14. True Anomaly Difference Approximation Error for HEO Test Case. 17

15. COWPOKE Coordinate System Approximation Errors for HEO Test Case. 18



1

 ACKNOWLEDGMENTS

This research is sponsored by the Air Force Office of Scientific Research (AFOSR).  The authors would like to
thank Maj. William Hilbun of the Computational Mathematics Division and Dr. Clifford Rhoades of the
Mathematics and Space Sciences Directorate of AFOSR for their support and commitment to basic research at the
AMOS site.  The authors would like to acknowledge the contributions of Dr. Chuck Matson, Mr. Paul Kervin, Lt.
Col. Jeff McCann, Ms. Valerie Skarupa, Capt. Dale White, Cecilia Luna, Irma Aragon, and Dr. Joseph Janni in
building and maintaining the AMOS basic research program.  Finally, we would like to thank Rich Burns, now with
the NASA Goddard Space Flight Center, for his previous contributions to AFRL formation flying efforts and Terry
Alfriend of Texas A&M University for his useful comments over the last several years.

INTRODUCTION

Cluster orbits are defined as the relative trajectories of objects traveling through space in close proximity to each
other.  Clusters occur when satellites in similar orbits approach each other, groups of satellites fly in formation to
perform specific mission functions, or several objects are launched or deployed from the same object.  Each case has
its own unique nuances, but the dynamics of how the objects move relative to each other are functionally the same.

The number of satellites in the geosynchronous belt has been steadily increasing for almost 40 years.  While the
number of satellites has been increasing, the space in the geosynchronous belt has not.  This has led to more clusters
of satellites operating in close proximity of each other and often unintentionally passing within kilometers of their
neighbors1.  Clusters of objects at this great altitude have been a long-standing challenge to space surveillance where
the satellites can be mistaken for each other.

In recent years, there has been increasing interest in the use of satellites flying in formation.  Several missions and
mission statements have identified formation flying as a means of reducing cost and adding flexibility to space based
programs or to accomplish goals that are not possible or very difficult to accomplish with a single satellite.  These
missions include NASA's Earth Observing-1 flying in formation with Landsat-7 and several European missions.  In
addition NASA has developed over 20 concepts for future missions involving formation flying.  Many of these
missions involve highly eccentric orbits.

During ballistic missile launches, several objects can achieve low earth orbit including the reentry vehicle, booster,
fairings, and the possibility of several balloon-like decoys attempting to confuse missile defense systems.  It is the
responsibility of the missile defense system to track the cluster of objects and quickly identify the reentry vehicle.

The Cluster Orbits with Perturbations of Keplerian Elements (COWPOKE) equations can provide the theoretical
foundation for analysis tools supporting a variety of applications.  Optical space surveillance often reveals multiple
satellites in a single telescope field of view.  An understanding of the relative dynamics may allow for satellite
identification based solely on relative position.  Further research may apply these results to relative orbit
determination of objects in a cluster or during close approach encounters.  This approach may prove to be more
accurate than performing orbit determination on the individual objects and determining differences.  The equations
might also be used to support the missile tracking experiments.  If tracking sensors have limited fields of view, they
may be required to track ballistic clusters individually; meaningful relative equations of motion may simplify the
transition from object to object.  Even if objects are tracked simultaneously, the relative equations of motion can be
used as part of the discrimination process to identify balloon-like decoys.  The COWPOKE equations would also be
extremely relevant to satellite formation flying work, such as the initial Air Force Research Laboratory’s TechSat 21
program, for formation flying design, analysis, and guidance and control applications.  While a great deal of work
has already been completed in support of formation flying missions, none provide the level of intuition and
understanding as one that uses Keplerian elements.  In addition, none of the work is accurate for long-term relative
motion for orbits with eccentricities up to 0.7.

A simple set of equations describing the relative motion of spacecraft clusters is needed for analysis, design, and/or
tracking of clusters.  Much of the previous work in this field has relied on using Hill's equations2 (also known as the
Clohessy-Wiltshire equations3).  Hill's equations describe the relative motion of spacecraft using a spacecraft-
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centered coordinate system.  However, Hill's equations assume that the reference orbit is circular, the objects are
close together, and there are no perturbations to simple two-body motion.  Several researchers have pointed out the
severe limitations inherit in these assumptions.  To rectify this, Gim and Alfriend4 used energy methods to develop a
state transition matrix to describe relative motion in non-circular orbits under the influence of perturbations.  While
closed form analytic solutions in a transformed variable space are valuable for analysis, these approaches may be
awkward for many applications since transformations are required to go from the canonical variable space to more
traditional representations of satellite orbits such as Keplerian elements.  Additionally, most working level engineers
lack the background to implement this approach.  Previous work by Garrison et al.5 developed equations of motion
for elliptical orbits in terms of the true anomaly instead of time.  Also, these equations were developed with
rendezvous in mind and are developed only to second order in eccentricity.  In addition, Melton6 developed a state
transition matrix for relative motion in eccentric orbits that is time dependent.  Melton relied on some of the same
foundations that are used in this paper, but the development was only to second order in eccentricity and is not
accurate for orbits of high eccentricity.  Baoyin et al,12 did similar work but assumed matching orbital periods; this
work also provides physical insight into formation flying in near circular orbits.  This paper develops physically
meaningful equations of relative motion for space objects in non-circular orbits using Keplerian elements.

Previous work by the authors7 led to the development of a set of equations that describe the first order effects of
Earth oblateness on the relative motion of objects in circular orbits.  In addition, they developed a simple set of
equations to describe the effects of Earth oblateness for polar orbits.  Then, they further developed the equations to
describe the motion for all inclinations8.  Finally, they examined the long-term evolution of the relative motion for
circular orbits and presented an approach to describe relative motion of satellites in elliptical orbits without
perturbations and assuming matching periods9.  This last step provided the building blocks for the COWPOKE
equations.

In the past, equations of relative motion such as Hill’s equations were developed by differencing the quasi-inertial
equations of motion and mapping those differences into the rotating coordinate system.  The result was a set of
equations that describe the relative differences between the satellites typically in terms of radial, cross-track, and
along-track components.  Rather than using the traditional algebraic approach, the COWPOKE equations are
developed using a geometric approach.  Here, the geometric properties and definitions of Keplerian orbital elements
will be used directly to map orbital element differences into the radial, cross-track, and along-track relative motion.
In addition to the increased intuitiveness of a geometric approach, by using Keplerian orbital elements and
differences in those orbital elements, we can take advantage of existing perturbation model development and
incorporate meaningful dynamics into the relative equations of motion much easier than with the algebraic
approaches.

There are challenges to this approach.  First and foremost, the geometric properties of Keplerian elements are a
function of the true anomaly, which has non-uniform variation with time.  Ideally, analytical solutions are expressed
in terms of the mean anomaly, which does vary linearly with time (outside the influence of perturbations).  The
relationship between the mean anomaly and eccentric anomaly is given by the well- known transcendental Kepler’s
equation.  This research uses a series expansion to approximate the true anomaly as a function of time.  A relation of
this sort was successfully employed as part of the building blocks of the COWPOKE equations.

Using that one relationship, one can construct the relative motion of formation flying satellites by reconstructing the
orbits individually based on their Keplerian elements and then differencing the two.  This paper develops true
equations of relative motion for clusters of objects.  And, unlike the previous work, this research incorporates
perturbation models and be generalized to account for small differences in semimajor axis.  This results in a set of
equations that describe the radial, cross-track, and along-track differences between two space objects in formation or
a cluster based on Keplerian orbital element differences.
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METHODS, ASSUMPTIONS, AND PROCEDURES

The formulation of the COWPOKE equations has three major challenges.  The first is choosing a suitable reference
frame for the relative equations of motion and expressing that frame in terms of Keplerian elements and element
differences.  The second is representing the geometrical true anomaly as a function of time.  The final challenge is
incorporating relevant perturbation effects.  Only the first two challenges are addressed in this work.

Classical relative motion approaches use a Cartesian reference frame to describe relative motion.  The components
of this frame are radial, cross-track, and along-track differences.  A limitation of this approach is that significant
cross-mapping between components occurs when the separation distance between the satellites is not small.  For
instance, if two satellites travel together in a circular orbit but are separated by 0.01 rad in true anomaly, the relative
position of one satellite with respect to the other will have an along-track separation as anticipated but will also have
a radial component despite the fact that the satellites are at the same altitude and within the same orbit.  Relative
position difference components that are artifacts of the chosen coordinate frame, such as the one outlined in the
preceding example, can greatly complicate the analysis of the relative motion.

A second coordinate frame choice is to use spherical separations.  Here, the relative position difference is described
by an altitude difference from a sphere having the radius of the reference satellite and angular components
perpendicular to and along the reference satellite’s direction of motion projected onto the sphere.  These
components, δr, δxt, and δat, are illustrated in Figure 1.  The spherical reference frame is well-suited to describing
the position of satellites in circular or near-circular orbits; however, when the orbital eccentricity becomes large, the
spherical reference frame suffers from the same limitations as the Cartesian system.

A third option to describe the relative motion of satellites in elliptic orbits is to use an ellipsoidal reference system.
This is similar to the spherical system except that the components are mapped along an ellipsoid rather than a
sphere.  This method has geometric challenges describing altitude variations and can still result in difficult to
understand position differences.

For this formulation, we chose the spherical reference frame since it’s slightly better than Cartesian for describing
the orbital motion and provides the physical insight we desire.  Additionally, it is a simple geometric mapping
between spherical and Cartesian given the quantities described in this work if Cartesian coordinates are desired.  In
fact, the desired reference frame will likely be a function of application, but it is hoped that enough information is
provided here so these equations can be easily reformulated in other reference frames.
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Figure 1: The Spherical Reference Frame for Relative Motion
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The spherical coordinate system used here can be realized using position and velocity vectors of the two satellites:
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Here, the auxiliary vector quantities, denoted by primes, are introduced so right planar triangles can be used in the
determination of desired angular values.  The spherical components can be expressed in terms of Keplerian elements
by using the following definitions10:
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However, the resulting equations become difficult to manipulate.  Instead, a simple geometrical mapping of
Keplerian element and element differences into the spherical components of relative motion can be achieved with
the following:

δr =
(a1 +δa)(1− (e1 +δe)2 )
1+ (e1 + δe)cos(f1 + δf )

−
a1(1 − e1

2)
1+ e1 cos(f1 )

δxt
r1

= β = −δΩsin(i1)cos(ω1 + δω + f1 + δf ) + δisin(ω1 + δω + f1 + δf ) (3)

δat
r1

=α = (δω + δf )cos(δi) + δΩcos(i1)



5

The spherical cross-track and along-track terms are, in fact, approximations accurate to first order in the Keplerian
elements differences.  Figure 2 illustrates how these terms are derived.
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Figure 2: Spherical Components in Terms of Keplerian Elements and Element Differences

We can further simplify the radial expression to first order in the Keplerian element differences:
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From these Keplerian element representations of the relative motion, we can derive some physical insight into how
orbital differences result in relative motion.  If we assume a circular reference orbit, Eqs. (3) and (4) resemble the
solutions to Hill’s equations where the cross-track motion becomes a simple oscillation, the altitude difference maps
directly into the radial motion with a periodic variation introduced by the eccentricity, and the altitude difference
couples into the along-track component through the true anomaly resulting in a combination of secular and periodic
effects7.

While the equations above are useful and do help provide physical insight into the relative motion, they are
expressed in terms of true anomaly.  To express the relative motion as a function of time, one must express the
above equations in terms of mean anomaly.  At a fundamental level, this entails finding a suitable approximate
solution to Kepler’s equation.  Battin provides several methods for doing so10.  For the initial COWPOKE
development, it was decided to use a Fourier-Bessel expansion of the true anomaly in terms of the mean anomaly
and eccentricity.

Using the geometric properties of the true and eccentric anomalies and Kepler’s equation, the following relationship
can be found:

df
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This can be expressed in terms of a Fourier cosine series that introduces the Bessel functions, Jn:
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Integrating this equation with respect to the mean anomaly provides an expression for the true anomaly in terms of
the mean anomaly:
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The result of this expansion is a sine series with coefficients that are power series in eccentricity.  The lowest order
of eccentricity for each coefficient series is k; thus the upper limit for k can be chosen based on the eccentricity of
the reference orbit and the desired accuracy.  Figure 3 plots eccentricity to the (k+1) power.  The figure is meant to
provide an indicator for the relative accuracy of Eq. (7) for a given eccentricity and choice of k.  For instance, if one
had a references eccentricity of 0.3 and desired series truncation errors below 1%, then one would choose to truncate
the series at k=4 or the fourth power of eccentricity.  When k=8, one sees errors below 10% up to e=0.7.

0.001

0.01

0.1

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Eccentricity

k=0
k=1
k=2
k=3
k=4
k=5
k=6
k=7
k=8
k=12

Figure 3: Relative Error Order of Magnitude for Eccentricity Series



7

Evaluating Eq. (7) up to the ninth frequency term (8M) yields:
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In examining Eq. (8), one can see that the leading term in each of the eccentricity series does not decrease for all
eccentricities; however, the second term in the eccentricity series is always negative and serves to reduce the
magnitude of that frequency’s contribution to the expansion as a whole.  Thus, the amplitude of each frequency term
decreases as the frequency increases allowing convergence of the entire expansion if enough terms are included in
each individual eccentricity series.  This means that for higher values of eccentricity, it is very important to include
at least two or more terms for each eccentricity series.  In Eq. (8), if the e9 and e10 terms were left out of the 7M and
8M frequency terms, the error due to this truncation could be larger than if the 7M and 8M terms were not included
at all.  For higher values of eccentricity, care must be taken to make certain that enough terms are included in each
eccentricity series to ensure one is not adding error with a given frequency term.  The good news is that each
eccentricity series converges fairly quickly so that powers of eccentricity at lower frequencies are much less
important than at higher frequencies; this means that one can get away with fewer terms in each eccentricity series
even if higher frequency terms are required.  Additionally, for smaller values of eccentricity, 0.3 and below,
truncation becomes much less of an issue since the e2 factor greatly reduces the impact of the higher order terms in
each eccentricity series and each higher frequency.

Truncation issues aside, the Fourier-Bessel series expansion of the true anomaly is an important component to the
formulation of the COWPOKE equations; however, an additional step must be taken to map mean anomaly
differences into true anomaly differences.  This is accomplished by simply applying a first order perturbation to Eq.
(8):

δf =
∂f
∂M

δM +
∂f
∂e

δe (9)

The general formulation includes higher order element difference terms and coupling terms between the element
differences but for cluster orbits, including the first order terms should provide accuracy to two orders of magnitude
smaller than the separation distance.  Including only the first order difference terms for the true anomaly expression
yields:
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(10)

The truncation issues for Eq. (10) are similar to those of Eq. (8) but are further compounded by the exponential
factors produced when taking the partial derivative with respect to eccentricity.  Note that the e9 coefficient is twice
as large as the e7 coefficient in the 8M frequency series for the δe component.

For unperturbed satellite motion, we can express the mean anomaly as a function of time δM as a function of δM at
epoch, semimajor axis difference, and time:

M1 = M 0 +
µ
a1

3

 

 
  

 

 
  t ,  δM = δM0 +

µ
(a1 +δa) 3 −

µ
a1

3

 

 
  

 

 
  t (11)

If one chooses, the mean motion terms in the above expression can be replaced by a second order perturbation of the
mean motion with respect to δa without significant error for most applications:

δM = δM 0 + µ −
3
2

a1

− 5
2δa +

15
8

a1

−7
2δa2 

 
 

 
 
 t (12)

Eqs. (8), (10), and (11) can now be substituted into Eq. (3) to complete the COWPOKE equations for unperturbed
satellite motion.  Here are the COWPOKE equations with only first order eccentricity terms included in the
expansion of the true anomaly and true anomaly difference:
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Note that we have taken the linearized form of the radial component as presented in Eq. (4).  From Figure 3, we
would expect that these equations are accurate to the 1% level up to eccentricities of 0.1.

While this work does not currently include perturbations to the satellite dynamics, one of the key focuses of the
COWPOKE development was to allow for the inclusion of additional force model effects.  This can be
accomplished by expressing the Keplerian elements and element differences as functions of time.  This will be the
focus of future work.
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RESULTS AND DISCUSSION

Simulations were performed to quantify the error inherent in the approximations used in the COWPOKE
formulation for two test cases.  The first test case employed a near-circular, low-Earth orbit (e=0.01) and the second
a high altitude eccentric orbit (e=0.7).  The test cases were performed in the MATLAB environment using two-body
dynamics; it is understood that that these simulations only measure the effectiveness of the COWPOKE equations to
model two-body motion and are not indicative of the performance for real satellite motion.

Truth data for the simulations were determined by calculating the mean anomaly of each satellite as a function of
time, converting the Keplerian elements to position and velocity vectors (with an algorithm taken from Vallado11),
and then mapping the position differences into the spherical radial, cross-track, and along-track components
described in Eq. (1).  The COWPOKE results come from a direct mapping of the Keplerian element and element
differences into those components using the methods described in the previous section.  It should be noted that the
angular cross-track and along-track values, α and β , were used for comparison purposes in the simulations rather
than the arc-lengths, δxt and δat.  Some additional error in the arc-lengths will be present due to the error in
estimating the magnitude of the position vector of the reference satellite, but that is typically the same order of
magnitude or smaller than the error in the angular separation.

Table 1 contains the orbital elements and element differences for the near-circular, low-Earth orbit (LEO) case; the
reference satellite, satellite 1, has the initial Keplerian elements given in the “Reference Elements” column while the
second satellite, satellite 2, has the initial Keplerian elements of the “Reference Elements” plus the “Element
Differences.”  The simulation span covers 2 hours or just over one orbital period.  The COWPOKE formulation
includes only first order eccentricity terms and uses the radial component approximation; these equations were
identical to Eq. (13).

Table 1: Keplerian Elements and Element Differences for LEO Test Case
Reference
Elements

Element
Differences

a 7000 km 0.01 km
e 0.01 0.01
i 0.785 rad (45 deg) 0.01rad

Ω 0 rad (0 deg) 0.01 rad
ω 4.712 rad (270 deg) 0.01 rad

M0 1.751 rad (90 deg) 0.01 rad

Figures 4-6 plot the spherical radial difference, angular cross-track, and angular along-track separations,
respectively.  Each figure actually contains two plots: the first shows the satellite separations described by the truth
orbits and the COWPOKE approximation, and the second shows the differences between the truth and COWPOKE
methods.  Thus, the second plot in each figure is the error inherent in the given COWPOKE formulation.

Figure 4 shows the COWPOKE radial error to be around the 2% level.  Figures 5 and 6 show the COWPOKE cross-
track and along-track errors are below 1%.  It is interesting to note that the radial and cross-track component errors
have frequencies that appear to be once per orbit while the along-track component has an error frequency of twice
per orbit.  We test the COWPOKE approximations directly to determine the dominant sources of these errors.

Before continuing with the error analysis, it is useful to examine Figures 4-6 and observe the physical insight into
the relative motion we can gain from the COWPOKE equations.  Eq. (4) tells us that the relative motion in the radial
direction is dominated by a once per orbit signature due to the eccentricity differences; the contributions from the
semimajor axis difference are small, and the contribution from the true anomaly difference is an order of eccentricity
smaller than the contribution from the eccentricity difference.  Eq. (3) shows that the cross-track motion is
comprised of once per orbit signatures from the inclination and right ascension of the ascending node differences.
Eq. (13) indicates that the along-track motion is offset from zero due to the right ascension, argument of perigee, and
mean anomaly differences but also has a once per orbit periodic signature with an amplitude of twice the reference
eccentricity.
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Figure 4: LEO Test Case Radial Differences and COWPOKE Errors
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Figure 5: LEO Test Case Angular Cross-Track Differences and COWPOKE Errors
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Figure 6: LEO Test Case Angular Along-Track Differences and COWPOKE Errors

Figure 7 plots the error in the first order Fourier-Bessel series expansion of the true anomaly of the reference
satellite.  From Figure 3, we expect to see around 1% error, and we do.  Also note the twice per orbit signature in the
error plot; this is also expected since the expansion only include once per orbit terms.  Figure 8 plots the error in the
approximation of the true anomaly difference; the error in this approximation is similar to the error in the true
anomaly approximation.  One sees that the dominant part of the along-track error is due to the COWPOKE
approximation error of the true anomaly difference.  If one chose, this error could be reduced by adding additional
terms to the series approximation for this variable.
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Figure 7: True Anomaly Approximation Error for LEO Test Case
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Figure 8: True Anomaly Difference Approximation Error for LEO Test Case

Figure 9 plots the errors in the COWPOKE coordinate system approximations for the LEO test case.  One can see
that the dominant part of the radial and cross-track errors is due to the coordinate system approximations made in the
COWPOKE formulations.  The radial component error can be reduced by using the analytical formulation for the
radial difference while an improved description of the cross-track component would have to be derived to reduce the
cross-track error.

Table 2 contains the orbital elements and element differences for the highly eccentric Earth orbit (HEO) test case.
The simulation spans 12 hours or just over one orbital period.  The COWPOKE formulation includes eighth order
eccentricity up to frequency 6M and tenth order eccentricity in frequency 7M and 8M; these are all of the terms
included in Eqs. (8) and (10).  This test case does not use the radial component approximation.

Table 2: Keplerian Elements and Element Differences for HEO Test Case
Reference
Elements

Element
Differences

a 27000 km 0.01 km
e 0.7 0.01
i 0.785 rad (45 deg) 0.01rad

Ω 0 rad (0 deg) 0.01 rad
ω 4.712 rad (270 deg) 0.01 rad

M0 1.751 rad (90 deg) 0.01 rad

Figures 10-12 plot the spherical radial difference, angular cross-track, and angular along-track separations,
respectively.  As with Figures 4-6, the first plot in each figure shows the satellite separations described by the truth
orbits and the COWPOKE approximation, and the second plot shows the differences between the truth and
COWPOKE methods.  Thus, the second plot in each figure is the error inherent in the given COWPOKE
formulation for this highly eccentric test case.
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Figure 9: COWPOKE Coordinate System Approximation Errors for LEO Test Case
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Figure 10: HEO Test Case Radial Differences and COWPOKE Errors
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Figure 11: HEO Test Case Angular Cross-Track Differences and COWPOKE Errors
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Figure 12: HEO Test Case Angular Along-Track Differences and COWPOKE Errors

Figure 10 shows the COWPOKE radial error to be significant with maximum errors being on the same order of
magnitude as the relative altitude differences.  Figures 11 and 12 show the COWPOKE cross-track and along-track
errors are on the order of 10%.  The sources of these errors can be determined by analyzing the approximations used
in the COWPOKE formulation.

Figure 13 plots the error in the Fourier-Bessel series expansion of the true anomaly of the reference satellite.  From
Figure 3, we expect to see around 10% error, and we do along with a mixture of frequencies in the signature due to
the series truncation.  The error in the true anomaly approximation maps into the frequency terms and becomes the
dominant source of error for the cross-track component.  Figure 14 plots the error in the approximation of the true
anomaly difference; the error in this approximation is an order of magnitude smaller than the error in the true
anomaly approximation since we have removed an order of eccentricity in the differentiation process and replaced it
by an eccentricity difference.  Since the eccentricity difference is an order of magnitude smaller than the
eccentricity, the eccentricity difference error is much smaller.  One can see that the dominant part of the radial and
along-track errors is due to the COWPOKE approximation error of the true anomaly difference and likely the
eccentricity series truncation for the 8M frequency terms.  If one chose, these errors could be reduced by adding
higher order terms to the series approximations for these variables.
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Figure 13: True Anomaly Approximation Error for HEO Test Case
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Figure 14: True Anomaly Difference Approximation Error for HEO Test Case

Figure 15 plots the errors in the COWPOKE coordinate system approximations for the HEO test case.  There is no
plot for the radial component since the radial approximation was not used, and thus the coordinate system error is
zero.  The cross-track and along-track components remain around or below the 1% level even for the high
eccentricity case.  It would seem that the coordinate system gives the COWPOKE equations an error bound of about
1%.

The cross-track and along-track errors for the HEO case are in line with expectations given the series truncations
made in the COWPOKE formulation for this test case.  The source of the radial error was larger than expected or
desired.  Further analysis of Eq. (4) shows that there is coupling between the true anomaly error and the eccentricity
difference.  The only way to mitigate this error is to reduce the error in the true anomaly difference approximation
which can be accomplished by adding additional terms to the series expansion or by solving Kepler’s equation
iteratively.  This would also serve to reduce the along-track errors as well.
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Figure 15: COWPOKE Coordinate System Approximation Errors for HEO Test Case

Despite the errors present in the HEO test case, the COWPOKE equations still model bulk of the relative motion
fairly well, and the geometric foundation on which the equations are built can provide a fair amount of physical
insight into the relative motion.  For the HEO case, the physical insight is very similar to the LEO test case except
we now observe that the true anomaly does not vary linearly with time.  While the series expansions do not provide
a great deal of insight into how the true anomaly varies, those who are familiar with the concept should be able to
anticipate the trends.  In Figures 10-12, we see that as the satellite moves towards apogee (recall the initial mean
anomaly was 90 deg), the true anomaly rate slows which pushes the relative motion extrema to toward the time of
perigee passage.  It is interesting to note that initial true anomaly difference is a function of the mean anomaly
difference, eccentricity, and the initial mean anomaly; a small mean anomaly difference at perigee of a highly
eccentric orbit maps into a much larger true anomaly difference than if the initial conditions occurred at apogee.
Additionally, one must be aware of this fact when considering error sources in the COWPOKE formulation since
only first order differences in the Keplerian elements have been included in the equations above.  Finally, from the
COWPOKE equations, one can see that the argument of perigee also plays a significant role in the relative motion
since the cross-track motion is dependent on both the true anomaly and the argument of perigee.  The argument of
perigee essentially controls the phasing between the cross-track and radial/along-track components of motion.
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CONCLUSIONS

This paper derived the Cluster Orbits With Perturbations Of Keplerian Elements (COWPOKE) equations for
unperturbed satellite motion.  A general framework is provided to generate a set of equations which describe the
relative motion between satellites in eccentric orbits explicitly as a function of the Keplerian elements of the
reference satellite, Keplerian element differences, and time.  This is accomplished using a geometric description of
the separation between the satellites to form the basis of motion and then by using a Fourier-Bessel series expansion
of the true anomaly in terms of the mean anomaly.  True anomaly and radial differences are derived using first order
perturbation methods.  The resulting equations are meant to provide accurate representations of the relative motion
between satellites, to be simple to implement, and to provide physical insight into the relative motion.  Test cases
show that this has been accomplished to a certain degree.

The geometric basis on which the COWPOKE equations are built is accurate to the 1% level when compared to the
separation distances.  This is currently the theoretical accuracy limitation. For most applications where the
eccentricities are below 0.1, the COWPOKE equations are easily realizable and can be as accurate as the limitations
of the geometric basis; however, the practical limitation for highly eccentric cases comes from generating enough
terms in the series expansion of the true anomaly to reduce approximation errors to an acceptable level.  This work
shows that the radial component of the relative motion in our spherical reference system is particularly sensitive to
true anomaly errors for high eccentricity orbits.

RECOMMENDATIONS

The next step in the development of the COWPOKE equations will be to include dynamic perturbation effects into
the relative motion.  Reference 8 has shown how secular effects due to Earth’s oblateness can be incorporated using
Keplerian elements and element differences.  Simulations will also be performed to determine what other
perturbations are required to support applications such as modeling geosynchronous clusters.  We will also look into
the invertibility of the COWPOKE equations.  Here we will attempt to solve for Keplerian element differences
based on desired or observed relative motion.  This would be tremendously useful for formation design and
geosynchronous close approach calculations.
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